If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2-24u=0
a = 5; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·5·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*5}=\frac{0}{10} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*5}=\frac{48}{10} =4+4/5 $
| 5u2–24u=0 | | 4h2–9h–9=0 | | 7v2+9v+2=0 | | (13x+10)+(10x+9)=180 | | 7/12*x=21/4 | | 4x+14=x+18 | | 7s^2-16s+4=0 | | 10x-6x+2+12=x+18 | | 2x^2+7x^2=225 | | (14x+2)+(11x+28)=180 | | 11d+20=-75 | | 7s2–16s+4=0 | | 7s^2–16s+4=0 | | 10x+2-6x+12=x+18 | | 6x−25+8x+51=180 | | 8x2^3x=512 | | -4/3w-3/4=w-1/2 | | x.x.5=181000 | | x^2(5)=181000 | | 3-1/2b=-1/3b-7 | | 2x(5)=181000 | | -8=2w-4 | | 0.6(25k-7.5k)-9.5=20 | | √2v-7=v-3 | | 1x/6+1x/12+1x/7+5+1x/2+5=x | | 3/2b+5=20−b | | (7/12/21/4)=x | | 56=4x+15 | | 7/12/21/4=x | | 1/6x+1/12x+1/7x+5+1/2x+5=x | | b2+6b=0 | | 7/12=21/4*x |